
Checkpointing à la Young/Daly: An Overview
Anne Benoit

anne.benoit@inria.fr

LIP, ENS Lyon, France

Yishu Du

yishu.du@inria.fr

Tongji Univ., Shanghai, China

& LIP, ENS Lyon, France

Thomas Herault

herault@icl.utk.edu

Univ. Tenn. Knoxville, USA

Loris Marchal

loris.marchal@inria.fr

LIP, ENS Lyon, France

Guillaume Pallez

guillaume.pallez@inria.fr

Inria Bordeaux, France

Lucas Perotin

lucas.perotin@inria.fr

LIP, ENS Lyon, France

Yves Robert

yves.robert@inria.fr

LIP, ENS Lyon, France

& Univ. Tenn. Knoxville, USA

Hongyang Sun

hongyang.sun@ku.edu

University of Kansas, USA

Frédéric Vivien

frederic.vivien@inria.fr

Inria & LIP, ENS Lyon, France

ABSTRACT
The Young/Daly formula provides an approximation of the opti-

mal checkpoint period for a parallel application executing on a

supercomputing platform. The Young/Daly formula was originally

designed for preemptible tightly-coupled applications. We provide

some background and survey various application scenarios to assess

the usefulness and limitations of the formula.

KEYWORDS
Checkpoint, Optimal period, Young/Daly formula.

ACM Reference Format:
Anne Benoit, Yishu Du, Thomas Herault, Loris Marchal, Guillaume Pallez,

Lucas Perotin, Yves Robert, Hongyang Sun, and Frédéric Vivien. 2022. Check-

pointing à la Young/Daly: An Overview. In 14th International Conference on
Contemporary Computing (IC3), August 4-6, 2022, Noida, India. ACM, New

York, NY, USA, 9 pages. https://doi.org/10.1145/3545008.3545049

1 INTRODUCTION
Checkpointing is the standard technique to protect applications

running on HPC (High-Performance Computing) platforms. Every

day, the platform experiences a few fail-stop errors (or failures, we

use both terms indifferently). After each failure, the application

executing on the faulty processor (and likely on many other pro-

cessors for a large parallel application) is interrupted and must be

restarted. Without checkpointing, all the work executed for the

application is lost. With checkpointing, the execution can resume

from the last checkpoint, after some downtime (enroll a spare to

replace the faulty processor) and a recovery (read the checkpoint).

Consider a parallel application executing on an HPC platform

whose nodes are subject to fail-stop errors. How frequently should

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IC3 2022, August 4-6, 2022, Noida, India
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9733-9/22/08. . . $15.00

https://doi.org/10.1145/3545008.3545049

Figure 1: Trade-off for the optimal checkpoint period.

it be checkpointed so that its expected execution time is mini-

mized? There is a well-known trade-off (see Figure 1): taking too

many checkpoints leads to high overhead, especially when there

are few failures while taking too few checkpoints leads to a large

re-execution time after each failure. The optimal checkpointing

period is (approximately) given by the Young/Daly formula as

𝑊YD =
√︁
2𝜇𝐶 [21, 67], where 𝜇 is the application MTBF (Mean

Time Between Failures) and 𝐶 is the checkpoint duration.

This paper provides an overview of the applicability and robust-

ness of the Young/Daly formula for different application scenarios.

There are two main frameworks. The first part of the survey deals

with preemptible applications, which may be checkpointed at any

time step. In this context, checkpointing is a coordinated process

and involves all the processors enrolled in the execution of the

application. The second part of the survey focuses on task systems,

where applications are composed of a set of atomic tasks, possibly

with inter-dependences. In this context, checkpoints are task-based

and can be taken only at the end of a task. Only the processors that

execute a task are involved in its checkpoint. The problem is then

to decide which tasks to checkpoint.

The paper is organized as follows. We first survey preemptible

applications in Section 2. Then we deal with task systems in Sec-

tion 3.We address some questions related to uncertainty in Section 4.

Finally, we conclude with some open questions in Section 6.

https://doi.org/10.1145/3545008.3545049
https://doi.org/10.1145/3545008.3545049

IC3 2022, August 4-6, 2022, Noida, IndiaAnne Benoit, Yishu Du, Thomas Herault, Loris Marchal, Guillaume Pallez, Lucas Perotin, Yves Robert, Hongyang Sun, and Frédéric Vivien

2 PREEMPTIBLE APPLICATIONS
In this section, we deal with parallel applications that can be check-

pointed at any time. In scheduling terminology, the applications

are preemptible.

2.1 Background
Platform and applications. Consider a large parallel platform

with𝑚 identical processors, or nodes. These nodes are subject to

fail-stop errors, or failures. A failure interrupts the execution of the

node and provokes the loss of its whole memory.

Consider a parallel application running on several nodes: when

one of these nodes is struck by a failure, the state of the applica-

tion is lost, and execution must restart from scratch unless a fault-

tolerance mechanism has been deployed. The classical technique to

deal with failures makes use of a checkpoint-restart mechanism: the

state of the application is periodically checkpointed, i.e., all partici-

pating nodes take a checkpoint simultaneously. This is the standard

coordinated checkpointing protocol, which is routinely used on

large-scale platforms [19], where each node writes its share of ap-

plication data to stable storage (checkpoint of duration 𝐶). When

a failure occurs, the platform is unavailable during a downtime

𝐷 , which is the time to enroll a spare processor that will replace

the faulty processor [21, 34]. Then, all application nodes (including

the spare) recover from the last valid checkpoint in a coordinated

manner, reading the checkpoint file from stable storage (recovery

of duration 𝑅). Finally, the execution is resumed from that point

on, rather than starting again from scratch. Note that failures can

strike during checkpoint and recovery, but not during downtime

(otherwise there are no differences between downtime and recov-

ery and we can simply include the downtime in the recovery time).

When a failure hits a processor, that processor is replaced by a spare.

This amounts to starting anew with a fresh processor. In the termi-

nology of stochastic processes, the faulty processor is rejuvenated.

However, all the other processors are not rejuvenated: this would

be infeasible due to the multitudinous spares needed!

Failures. We assume that each node experiences failures whose

inter-arrival times follow Independent and Identically Distributed

(IID) random variables obeying an arbitrary probability distribution

D. We only assume that D is continuous and of finite expectation

and variance, a condition satisfied by all standard distributions. We

let 𝜇ind denote the expectation of D, also known as the individual

processor MTBF. Even if each node has an MTBF of several years,

large-scale parallel platforms are composed of so many nodes that

they will experience several failures per day [18, 28]. Hence, a

parallel application using a significant fraction of the platform will

typically experience a failure every few hours. More precisely, an

application executing with 𝑝 processors has an MTBF 𝜇 =
𝜇ind
𝑝 :

intuitively, the application is struck by failures at a rate which is 𝑝

times higher than that of each enrolled processor. We come back to

this statement in Section 2.3.

Checkpointing strategies. Given a parallel application of length

𝑇base (base time without checkpoints nor failures), the optimization

problem is to decide when and how often to take a checkpoint,

to minimize the expected execution time of the application. The

application is divided into 𝑁c segments of length𝑊𝑖 , 1 ≤ 𝑖 ≤ 𝑁c,

each followed by a checkpoint of length 𝐶 . Of course
∑𝑁c
𝑖=1

𝑊𝑖 =

𝑇base. We add a final checkpoint at the end of the last segment,

e.g., to write final outputs to stable storage. Symmetrically, we

add an initial recovery when re-executing the first segment of

an application (e.g., to read inputs from stable storage) if it has

been struck by a failure before completing the checkpoint. Adding

a final checkpoint and an initial recovery brings symmetry and

simplifies formulas, but it is not at all mandatory: see [12] for an

extension relaxing either or both assumptions. The question is then

to determine the number 𝑁c of segments and their lengths𝑊𝑖 .

2.2 The Young/Daly Formula
Here is an intuitive (but simplified) derivation of the Young/Daly

formula for the optimal checkpoint period. Owing to the addition

of the final checkpoint and the initial recovery, all segments of

the application have the same shape. It is thus natural (by symme-

try) to assume that they have the same length𝑊 in the optimal

solution. Thus we assume that checkpoints are taken periodically,

after every𝑊 unit of work. Now, after every𝑊 unit of work, we

spend𝐶 seconds to checkpoint, which corresponds to a first source

of waste 𝑆1 = 𝐶
𝑊 +𝐶 . Here the waste is defined as the fraction of

time during which the application is not performing useful com-

putations; checkpoint, recovery, downtime, and re-execution do

not count as useful computations. 𝑆1 is the failure-free waste. The
second source of waste 𝑆2 is due to failures: each time a failure

strikes, which happens every 𝜇 seconds on average, we lose 𝐷 + 𝑅

for downtime and recovery, and then we have to re-execute some

work, namely the work performed since the last checkpoint (or

from the beginning of the execution if none has been taken yet).

On average again, the failure strikes in the middle of the segment:

sometimes before, sometimes after, hence, on average after
𝑊 +𝐶
2

seconds. We obtain 𝑆2 =
1

𝜇 (𝐷 + 𝑅 + 𝑊 +𝐶
2

). 𝑆1 is the failure-induced
waste. Altogether, both sources of waste approximately add up, so

we have to find𝑊 that minimizes 𝑆1 + 𝑆2. We further simplify the

solution by assuming that𝑊 must be an order of magnitude higher

than the fault-tolerance parameters 𝐷,𝐶, 𝑅. This is a necessary con-

dition for the waste to remain reasonably low. This leads to 𝑆1 ≈ 𝐶
𝑊

and 𝑆2 ≈ 𝑊
2𝜇 . The total waste 𝑆1 + 𝑆2 ≈ 𝐶

𝑊
+ 𝑊

2𝜇 is minimum for

𝑊YD =
√︁
2𝜇𝐶 (1)

This is nothing else than the famous Young/Daly formula! Finally,

note that 𝑆1 = 𝑆2 for𝑊YD, which corroborates the intuition given in

Figure 1 that both sources of waste, failure-free and failure-induced,

should be balanced in the optimal solution. See [34] for a more

detailed derivation using the waste argument.

2.3 Accuracy
Recall that each node experiences failures whose inter-arrival times

follow IID random variables obeying a probability distribution D.

When D is Exp(𝜆), i.e., an Exponential distribution of rate 𝜆, the

framework is well-understood. This is because the inter-arrival

times of the failures that strike an application with 𝑝 processors are

IID random variables obeying an Exponential distribution Exp(𝑝𝜆).
This is due to the memoryless property of the Exponential dis-

tribution: when a failure strikes one processor, that processor is

rejuvenated, while the remaining 𝑝 − 1 processors are not. With an

Checkpointing à la Young/Daly IC3 2022, August 4-6, 2022, Noida, India

arbitrary distribution D, the time to the next failure would depend

upon the history of these 𝑝−1 processors: for each of them, the time

to their next failure depends upon when their last failure struck.

This is not the case for an Exponential distribution, owing to its

memoryless property: after a failure on any of the 𝑝 processors, the

time to the next failure remains the same random variable Exp(𝜆)
for each of them, rejuvenated or not. Therefore, the time to the

next failure for the application obeys an Exp(𝑝𝜆) distribution, as
the minimum of 𝑝 Exp(𝜆) distributions. From the resilience point

of view, the application executes on a single processor of fault rate

𝑝𝜆! Owing to this observation, one can formally derive that the

optimal checkpoint strategy is periodic, and compute the optimal

checkpoint period. The derivation is a bit technical and the optimal

segment length𝑊opt is obtained using the Lambert W function. But

comfortingly, a first-order approximation of𝑊opt is𝑊YD, the value

given by the Young/Daly formula. See [12, 16] for details on the

derivation.

Now, any continuous distribution D other than Exponential is

not memoryless, and the optimal checkpoint strategy is unknown

in that case. The bad news is that the most accurate probabil-

ity distributions modeling processor failures are LogNormal [33]

and Weibull [52, 53, 60, 61] instead of Exponential. For instance,

LANL failure traces are best fit by Weibull distributions of different

shapes [27]. Weibull distributions with a shape parameter smaller

than 1 experience infant mortality; for those distributions, it is

known that periodic checkpointing is not optimal. Intuitively, the

length of a segment between two consecutive checkpoints should

increase with time, as the instantaneous failure rate decreases. How-

ever, the good news is that the MTBF can still be defined as the

limit:

lim

𝑇→∞
𝑛(𝑇)
𝑇

=
𝜇ind
𝑝

where 𝑛(𝑇) is the expected number of failures striking an applica-

tion with 𝑝 processors in the time interval [0,𝑇]. This limit exists

for any regular distribution D. A natural heuristic is to use a pe-

riodic checkpoint strategy, with a segment length given by the

Young/Daly formula and using that latter value for the MTBF. It is

unknown how this approach is close to the optimal but it seems

good enough in many scenarios. See [12, 16] for an assessment of

this heuristic, and for a comparison with other checkpoint strate-

gies which aim at maximizing work or efficiency until the next

failure.

2.4 Extensions
In Section 2.2, we have shown how to derive the optimal checkpoint

period when the objective is to minimize the expected completion

time of the application. We used a simplified model where no com-

putation could take place while checkpointing. Modern processors

could run several threads in parallel and compute while executing

I/O transfers. A first extension to the framework of Section 2.2 is to

extend the model with a linear slowdown factor 𝛼 ∈ [0, 1], where,
say, 𝛼 = 0.5 means that computations progress at half the main

speed when checkpointing. The two extreme values are 𝛼 = 0when

checkpoints are blocking (no overlap), and 𝛼 = 1 when execution

can progress with no penalty while a checkpoint is taken (full over-

lap). The Young/Daly formula becomes𝑊YD =
√︁
2𝜇 (1 − 𝛼)𝐶 . Note

that 𝛼 = 0 leads to the original Young/Daly formula, while 𝛼 = 1

leads to𝑊YD = 0, which means that one should checkpoint all the

time if checkpointing is free! Of course in practical scenarios we

expect 𝛼 < 1. See [34] for more details.

Another extension to the framework of Section 2.2 is to tar-

get a different optimization objective: instead of minimizing the

(expected) total execution time, one would aim at minimizing the

(expected) total energy consumed to execute the application. This

objective is important both for economic and environmental rea-

sons. The optimal period𝑊energy to minimize energy consumption

is different from the Young/Daly formula mainly because the power

spent when computing is not the same as power spent when check-

pointing. More precisely, the power consumption at each time step

of the application relies on three components:

• PStatic: base power consumed when platform is switched on,

• PCal: when the platform is computing, we have to consider the

CPU overhead in addition to the static power PStatic.

• PI/O: similarly, this is the power overhead due to file I/O. This

supplementary power consumption is induced by checkpointing,

or when recovering from a failure.

A key parameter to compare𝑊energy and𝑊YD is the ratio
PStatic+PI/O

PStatic+PCal

.

See [3, 27, 29] and the references therein for further details.

Finally, another optimization objective is to minimize the ex-

pected volume of I/O operations due to checkpointing and recovery.

This objective is important because I/O resources are scarce in HPC

platforms. Typical HPC applications execute on dedicated comput-

ing nodes but share the I/O bandwidth of the platform with other

applications. Hence, decreasing the volume of I/O operations by

each application is likely to improve the global throughput of the

platform. A natural question is then: given a single application that

executes on the platform, can we increase the checkpoint period

significantly beyond the Young/Daly formula without sacrificing

too much in performance? Note that we have a bi-criteria opti-

mization problem here because we need to trade off performance

with I/O pressure. Note also that a single application running on

the platform may be a capability workload that spans the entire

platform. The answer to the question is yes: Arunagiri et al. [1]

studied longer, sub-optimal periods for a single application, with

the intent of reducing I/O pressure. They showed, both analytically

and empirically using four real platforms, that a decrease in the I/O

requirement can be achieved with only a small increase in waste.

However, space-sharing HPC platforms for the concurrent execu-

tion of multiple parallel applications is the prevalent usage strategy

in today’s HPC centers, and capability workloads that span the

entire platform are much less common [65]. The question becomes

how to avoid contention when several applications try to check-

point at the same time: the I/O bandwidth will be shared among

these applications, their checkpoint time will increase, and the

Young/Daly formula that was computed for each application in

isolation is no longer optimal due to these interferences. We will

come back to this question in Section 4.2.

2.5 Loosely-Coupled Applications
The Young/Daly formula applies to a parallel application where all

processors progress and cooperate continuously, e.g., by exchang-

ing messages: the application cannot continue its execution when

IC3 2022, August 4-6, 2022, Noida, IndiaAnne Benoit, Yishu Du, Thomas Herault, Loris Marchal, Guillaume Pallez, Lucas Perotin, Yves Robert, Hongyang Sun, and Frédéric Vivien

one processor is struck by a failure; it has to wait until a spare

is up and running. In other words, the application is assumed to

be tightly coupled and behaves as if it were executed on a single

(very powerful) processor. Recall that we already made such an

analogy for failures: in fact, the parallel application can be viewed

as a sequential one, executing on a single processor, very fast but

very unreliable too.

What if the application is not tightly-coupled? If the application

includes several tasks that can execute concurrently and indepen-

dently on different subsets of resources, how frequently should

each task be checkpointed? We use the word task here, but not

in the traditional meaning where tasks are atomic and can only

be checkpointed at the end of their execution (see Section 3 for

such a framework). On the contrary, we assume that each task is

preemptible and can be checkpointed at any time step. It is then

natural to checkpoint each task using the Young/Daly period. But is

this a good strategy, given that many tasks execute in parallel, and

that the failure of one task will slow down the whole application?

Consider the simple example of a fork-join application that con-

sists of 302 tasks: an entry task, 300 identical parallel tasks, and an

exit task. Each parallel task runs on 𝑝 = 30 processors for𝑇base = 10

hours, and is checkpointed in 𝐶 = 6 minutes. The platform has at

least 9, 000 processors so that the 300 parallel tasks can indeed exe-

cute concurrently. Such applications are typical of HPC applications

that explore a wide range of parameters or launch subproblems in

parallel. Assume a short downtime 𝐷 = 1 minute, and recovery

time 𝑅 = 𝐶 . Finally, assume that each task has 0.5% chances to fail

during execution; this setting corresponds to an individual MTBF

𝜇ind such that 1 − 𝑒
− 𝑝𝑇base

𝜇ind = 0.005, i.e., 𝜇ind = 59, 850 hours (or

6.8 years). This is in accordance with MTBFs typically observed

on large-scale platforms, which range from a few years to a few

dozens of years [18].

In the following paragraphs, we refer to [11] for the details of

computing the expectations of execution times. For each task, the

Young/Daly period is𝑊YD =

√︃
2
𝜇ind
𝑝 𝐶 ≈ 20 hours, and the expected

execution time of a single task E(𝑇1-task) is minimized when only

a single checkpoint is taken at the end of the execution. Recall

that we always take a checkpoint at the end of the execution for

simplification, thus the optimal solution for each task is to take no

additional checkpoint. Then, one can derive that E(𝑇1-task) ≈ 10.4.

However, with 300 tasks executing concurrently, one can com-

pute that the expectation of the total time required to complete all

tasks is E(𝑇all-tasks) > 14. The key point here is that the expectation

E(𝑇all-tasks) of the total time required to complete all tasks is far

larger than the maximum of the expectations (which in the example

all have the same value E(𝑇1-task)).
Because the exit task cannot start before the last parallel task is

completed, the expectation of the total execution time of the fork-

join application is E(𝑇total) = E(𝑇entry) + E(𝑇all-tasks) + E(𝑇exit),
where E(𝑇entry) and E(𝑇exit) are the expected duration of the entry

and exit tasks. Now, when adding four intermediate checkpoints

to each task, we obtain E(𝑇all-tasks) < 12.75. The tasks are then

slightly longer (10.5 hours without failure), but the impact of a

failure is dramatically reduced if a checkpoint is taken every 2

hours. By diminishing E(𝑇all-tasks), we save 75 minutes (and in fact

much more than that, because the lower and upper bounds for

E(𝑇all-tasks) are loosely computed).

This little example shows that for loosely-coupled applications

with a high degree of parallelism, checkpointing each task à la

Young/Daly is not good enough! See [11] for a comprehensive

analysis and evaluation.

3 TASK GRAPHS
In this section, we deal with non-preemptible, task-based applica-

tions. The application is structured as a task graph, or workflow.

Each task is atomic and checkpointing is only possible right after

the completion of a task. The task graph summarizes the dependen-

cies between the tasks. The problem is then to determine which

tasks should be checkpointed. It turns out that optimal, or even

efficient, checkpoint strategies are much more difficult to derive

than for preemptible applications.

3.1 Baseline
In task-based systems, checkpoint and rollback-recovery have been

considered, but the granularity of the task system has motivated a

different approach. Since each task represents an atomic application

in itself, the inputs of tasks (that are usually the outputs of other

tasks) are checkpointed to enable the re-execution of failed tasks.

The de-facto standard approach for task systems is the checkpoint
every task approach. This approach is inspired by the work done

in cloud workflow systems, as is typically done in [66] for a recent

example. See [5, 24, 39, 41, 49] for a comprehensive survey of tech-

niques. The outputs of all tasks, which will serve as inputs to other

tasks later in the execution, are saved on stable storage as soon

as each task completes. The stable storage is typically located in a

data center whose disks are accessed by the virtual machines (VMs)

that support the execution of the tasks. This approach guarantees

that recovering from a failure only requires the re-execution of the

task(s) that were executing when the failure stroke; no rollback to

previous tasks is needed since their outputs have been checkpointed

previously and can be retrieved from the disks.

Of course, checkpointing (the output of) every task may induce

a huge overhead, in particular when there are many small tasks

and limited I/O bandwidth to stable storage. We outline below a

few cases where the optimal solution is known, before coming back

to the general case of a workflow whose task graph is arbitrary.

3.2 Linear Chains
The simplest case is when the task graph of the workflow is a

linear chain of (parallel) tasks 𝑇1,𝑇2, . . . ,𝑇𝑛 . There is a dependence

from 𝑇𝑖 to 𝑇𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1. The optimal solution consists in

determining which tasks should be checkpointed.

The execution time of 𝑇𝑖 is𝑤𝑖 , its size is 𝑞𝑖 processors, its check-

point time 𝐶𝑖 , and its recovery time is 𝑅𝑖 . Assuming that failures

obey an Exponential distribution Exp(1

𝜇ind
), where 𝜇ind is theMTBF

of each individual processor, the expected execution time E(𝑇𝑖) to
execute 𝑇𝑖 and to checkpoint it at the end of the execution is well-

known; we have:

E(𝑇𝑖) =
(
𝑞𝑖

𝜇ind
+ 𝐷

)
𝑒

𝑞𝑖
𝜇ind

𝑅𝑖

(
𝑒
− 𝑞𝑖

𝜇ind
(𝑤𝑖+𝐶𝑖) − 1

)

Checkpointing à la Young/Daly IC3 2022, August 4-6, 2022, Noida, India

where 𝐷 is the downtime (see [12, 34]). The expression for E(𝑇𝑖)
can be extended for a block of consecutive tasks followed by a

checkpoint (simply replace𝑤𝑖 by the execution time of the block).

This gives the baseline for a dynamic programming algorithmwhere

one tries to place the first checkpoint at the end of task 𝑇𝑘 for

1 ≤ 𝑘 ≤ 𝑛 and computes recursively the optimal solution for

the remaining sub-chain 𝑇𝑘+1,𝑇𝑘+2, . . . ,𝑇𝑛 . This is the approach

followed by Toueg and Babaoglu [63].

3.3 Iterative Applications
The next problem after a linear chain is that of a pipelined linear
workflow: we consider now a workflow made of a large number

of iterations, each iteration being the same linear chain of parallel

tasks. A typical example is an application consisting of an outer

loop “While convergence is not met, do”, and where the loop

body includes a sequence of large parallel operations. As in Sec-

tion 3.2, the objective is to find which task outputs should be saved

on stable storage to minimize the expected duration of the whole

computation. However, if the workflow consists of, say, ten thou-

sand iterations, each with twenty tasks, one does not want to apply

the dynamic programming algorithm of Toueg and Babaoglu [63]

to a chain of two hundred thousand tasks!

A natural heuristic is to use the Young/Daly formula and check-

point at the end of the current task as soon as the total work ex-

ecuted since the last checkpoint exceeds the quantity

√︁
2𝜇𝐶 . Un-

fortunately, even if all tasks may well enroll the same number of

processors 𝑞 and, hence, have the same MTBF 𝜇 =
𝜇ind
𝑞 , they are not

likely to have the same checkpoint duration𝐶 . One can approximate

𝐶 by the minimum, maximum, or average values of the checkpoint

duration of all tasks. This is the heuristic proposed in [26], and its

performance is shown satisfactory for a wide range of application

scenarios.

As a side note, when the number of iterations is infinite (or very

large in practice), it is shown in [26] that there exists an optimal

checkpointing strategy that is periodic. It consists of a pattern of

task outputs to checkpoint, where this pattern spans over a set of

iterations of bounded size. This pattern is repeated over and over

throughout the execution. [26] also provides a dynamic program-

ming algorithm, which is polynomial in the number of operations

included in the outer loop to compute the optimal periodic check-

point pattern. The complexity of the algorithm does not depend on

the number of iterations of the outer loop. This pattern may well

checkpoint many different tasks, across many different iterations.

For a workflow with a fixed number of iterations, this periodic

strategy is appealing. However, the cost of computing the optimal

pattern may be high, and the Young/Daly extension described above

may be preferred in some frameworks.

3.4 General Workflows
Another special case is that of a workflow whose dependence graph

is arbitrary but whose tasks are parallel tasks that each executes on

the whole platform. In other words, the tasks have to be serialized.

The problem of ordering the tasks and placing checkpoints is proven

NP-complete for simple join graphs in [2], which also introduces

several heuristics.

For general workflows, the news is not good either. Consider

the problem of scheduling an arbitrary workflow. As mentioned

in Section 3.1, the common strategy used in practice is checkpoint
everything, or CkptAll: all output data of each task is saved onto

stable storage. While this strategy leads to fast restarts in case of

failures, its downside is that it maximizes checkpointing overhead.

At the other end of the spectrum would be a checkpoint nothing
strategy, or CkptNone, by which all output data is kept in memory

(up to memory capacity constraints) and no task is checkpointed.

This corresponds to “in-situ” workflow executions, which have

been proposed to reduce I/O overhead [68]. The downside is that,

in case of a failure, a large number of tasks may have to be re-

executed, leading to slow restarts. The objective of an efficient

checkpoint strategy is to achieve a desirable trade-off between

these two extremes. But the complexity of this problem is steep.

The fundamental difficulty lies in the evaluation of a solution.

A solution consists of an ordered list of tasks to execute for each

processor, and for each task whether or not to save its output

data to stable storage after its execution. In a failure-free execu-

tion, the total execution time, or makespan, of a solution is simply

the longest path in the DAG, accounting for serialized task exe-

cutions at each processor. With failures, the makespan becomes a

random variable because task execution times are probabilistic, due

to failures causing task re-executions. Consider a first simple case

with the CkptAll strategy and a solution in which each task is as-

signed to a different processor. Computing the expected makespan

amounts to computing the expected longest path in the schedule.

Unfortunately, computing the expected length of the longest path

in a DAG with probabilistic task durations is a known difficult

problem [30, 48]. Even in the simplified case when task durations

are random variables that can take only two discrete values, the

problem is #P-complete [30].
1

Now, at the other extreme, consider a second simple example

with the CkptNone strategy and a solution in which each task is

assigned to a different processor. Even if each task has the unitary

cost and can fail only once, computing the expected makespan is

a #P-complete problem again [31]. These two examples show all

the difficulty of the problem, even when an ordered list of tasks to

execute is already assigned to each processor. Several heuristics to

tackle the general problem are proposed in [32].

4 DEALINGWITH UNCERTAINTY
This section briefly addresses two scenarios where it is impossible

to apply the Young/Daly formula directly, even though the target

application is preemptible and tightly coupled as in Section 2. Ba-

sically, in the𝑊YD =
√︁
2𝜇𝐶 formula, this is when either 𝜇 or 𝐶 is

unknown!

4.1 Unknown MTBF
When the MBTF 𝜇ind of an individual processor is unknown, the

MTBF 𝜇 =
𝜇ind
𝑝 of the application is unknown too. There is no

other solution than to learn the value of 𝜇 by trial and error. The

initial guess for 𝜇 is arbitrary, say from a few hours to several

1
Recall that #P is the class of counting problems that correspond to NP decision

problems [14, 50, 64], and that #P-complete problems are at least as hard as NP-

complete problems.

IC3 2022, August 4-6, 2022, Noida, IndiaAnne Benoit, Yishu Du, Thomas Herault, Loris Marchal, Guillaume Pallez, Lucas Perotin, Yves Robert, Hongyang Sun, and Frédéric Vivien

weeks depending upon the size of the application. Compute𝑊YD
accordingly and schedule the first checkpoint. If a failure strikes

before this checkpoint, decrease the current estimate of 𝜇. If no

failure strikes before this checkpoint, keep the current value for 𝜇

and proceed for a few periods of the same length. if there is still

no failure at this point, it should be safe to increase the estimate of

𝜇. The rates for decreasing/increasing the current estimate could

follow some geometric progression, e.g., the next estimate is either

half or twice the current one.

An interesting heuristic is proposed in [56]. The checkpoint pe-

riod is dynamically adjusted so that the aggregate checkpointing

cost always equals the expected rework cost after failure recovery.

The intuition follows the discussion in Section 2.2: in the optimal so-

lution, both sources of waste (checkpoint and re-execution) should

be balanced.

4.2 Unknown Checkpoint Time (Due to
Contention)

This section deals with the scenario where checkpoint cost 𝐶 is

unknown. In fact, this corresponds to a scenario where several

applications are executing concurrently on the platform (recall

space-sharing from Section 2.4). Each application has precise knowl-

edge of the volume of data to be saved but the I/O bandwidth to

stable storage that is granted is subject to variations over time. The

main reason is contention: consider the simple case where two

applications of the same size (number of processors) checkpoint

simultaneously a file of the same size (volume). Each application

will be assigned half the I/O bandwidth to checkpoint, therefore the

commits will take twice as expected. In other words, the checkpoint

time of each application is doubled, and the Young/Daly period√︁
2𝜇𝐶 should have been increased by a factor

√
2; the checkpoint

strategy is no longer optimal, and efficiency will decrease.

Several heuristics are described in [35] for this contention prob-

lem. Each application attempts to use its Young/Daly period. The

I/O token is given to only one application at every time step, and

I/O operations cannot be interrupted once started. If several appli-

cations post concurrent requests to checkpoint, one will be selected

and the other ones will continue their execution. The selection is

based upon several criteria, including the time already spent wait-

ing for I/O and the risk incurred by all the applications (increased

waste) that have not been selected. See [35] for details.

5 SILENT ERRORS
In this section, we consider another type of error: while all previous

sections addressed fail-stop errors, we now deal with silent errors,

first in isolation and then in combination with fail-stop errors. It

turns out that the Young/Daly formula can be extended to deal with

both types of errors.

5.1 Background
We start with some background on silent errors, a.k.a. silent data

corruptions (SDCs). While fail-stop errors lead to fatal interrup-

tions (such as a crash) and cause the loss of the entire memory of

the processor, silent errors only impact a given process and lead

to incorrect results. But a silent error strikes undetected and the

processor can continue its execution; sometimes the silent error

Figure 2: Fails-stop errors versus silent errors.

can be detected and corrected, and some other times it degenerates

into a fatal fail-stop error.

Silent errors may be caused, for instance, by soft errors in the

L1 cache, arithmetic errors in the ALU (Arithmetic and Logic Unit),

or bit flips due to cosmic radiation [44, 47, 70, 71]. Many silent

errors caused by one or multiple bits that spontaneously flip to the

opposite state are caught by hardware mechanisms such as error

correcting codes (ECCs) that have been implemented to protect

memory. But in reality, some bit flips still manage to pass unde-

tected [59]. Moreover, processor caches are not protected by ECC

in general, but by weaker mechanisms, like simple parity, exposing

a higher risk of undetectable error in case of multiple simultaneous

bit flips. Buses also often are a weak link in the protecting chain,

making all data transfers at higher risk. In addition, the constant

need to reduce component size and voltage increases the likeli-

hood of silent errors. In a nutshell, silent errors have become a

major threat due to the increase in problem size [58]: the larger the

problem, the more memory to be used to store the data, the more

frequent the errors, and the higher the probability of overriding

ECC protection, generating multiple errors.

A major problem with silent errors is detection latency: contrarily
to a fail-stop error whose detection is immediate, a silent error is

identified only when the corrupted data is activated and/or leads to

an unusual application behavior. On the contrary, checkpoint and

rollback recovery assumes instantaneous error detection, and this

raises a new difficulty: if the error stroke before the last checkpoint,

and is detected after that checkpoint, then the checkpoint is cor-

rupted and cannot be used to restore the application. To solve this

problem, one may envision keeping several checkpoints in memory

and restoring the application from the last valid checkpoint, thereby
rolling back to the last correct state of the application [42]. But even

if it was at all possible to store many checkpoints (which is very

demanding in memory), one would not know how to identify the

last valid one. Some verification mechanism, or detector, must be

enforced.

Considerable efforts have been directed at designing such verifi-

cation mechanisms to reveal silent errors, because error detection

is usually very costly. Hardware mechanisms, such as ECC mem-

ory, can detect and even correct a fraction of errors, but in prac-

tice, they are complemented with software techniques. The only

general-purpose method is to replicate the execution of the target

computational kernel on two sets of processors and to compare

the results of both executions. If they do not coincide, an error has

been detected, and the application must be executed a third time. To

avoid a-posteriori re-execution, triplication can be enforced, which

Checkpointing à la Young/Daly IC3 2022, August 4-6, 2022, Noida, India

allows for error correction in addition to error detection, using a

simple majority vote. However, triplication (originally known as

triple modular redundancy and voting [43]) is evenmore costly than

replication, which already requires half the resources to execute

redundant operations.

Application-specific information can be very useful to enable

ad-hoc solutions, which dramatically decreases the cost of detec-

tion. Many techniques have been advocated. They include memory

scrubbing [38] and ABFT techniques [15, 37, 55], such as coding for

the sparse-matrix vector multiplication kernel [55], and coupling a

higher-order with a lower-order scheme for PDEs [13]. These meth-

ods can only detect an error but do not correct it. Self-stabilizing

corrections after error detection in the conjugate gradient method

are investigated in [51]. Fault-tolerant iterative solvers for sparse

linear algebra are introduced in [17, 20, 36], using extra checks

such as re-computing inner products of vectors that should be

orthogonal, or even re-computing the residual.

In summary, application-specific detectors are very appealing

due to their low cost as compared to replication, but they suffer

from some limitations. Most application-specific detectors can only

detect errors, not correct them. Next, they are used to detect errors

of a certain type, while many types can strike. For instance, with

iterative methods, orthogonality tests will detect arithmetic errors

but cannot do anything if we start with corrupted data in memory.

Worse, even for a given type of error, the detector will not detect

all the errors of that type, but only a fraction of them (one says

that the detector recall is strictly smaller than one). Finally, ABFT

is one of the few methods that enables error correction in addition

to detection, but it is currently limited to correcting a single error

due to the numerical instability of state-of-the-art methods.

5.2 Optimal Period for Silent Errors
We study a generic solution that is agnostic of the nature of the

verification mechanism (replication, checksum, error correcting

code, coherence tests, etc.). We assume that we can rely on a fully

general-purpose detector, of cost𝑉 . The idea is to perform a verifica-

tion just before taking each checkpoint. If the verification succeeds,

then one can safely store the checkpoint. If the verification fails, it

means that a silent error has struck since the last checkpoint, which

was duly verified, and one can safely recover from that checkpoint

to resume the execution of the application.

See Figure 2 for an illustration and comparison with fail-stop

errors. If a silent error strikes, it is always detected only at the end of

the period, when the verification reveals the error; on the contrary,

a fail-stop error strikes in the middle of the period on average and

is detected immediately. Note that there is no downtime for silent

errors because the processor can continue its execution after a silent

error and need not be replaced. For simplification, we have used

𝐷 = 0 in the second row of Figure 2 (with fail-stop error), but recall

there is a downtime after a fail-stop error in the general case.

Just as for fail-stop errors, we introduce the MTBE of individual

nodes as 𝜇silentind . Here the MTBE is the Mean Time Between Errors,

the counterpart for silent errors of the MBTF for fail-stop errors.

TheMTBE of an application with 𝑝 processors will be 𝜇silent =
𝜇silentind
𝑝 :

because the frequency of silent errors is proportional to the number

of arithmetic operations executed, and/or to the volume of the

Figure 3: Introducing two intermediate verifications in the
period.

memory footprint of the application; the MTBE scales linearly with

the size of the application, just as the MTBF does.

Now consider a parallel application of MTBE 𝜇silent. At first sight,

one could think that the optimal Young/Daly period for silent errors

will be𝑊YD =

√︃
2𝜇silent (𝑉 +𝐶), because we have replaced each

checkpoint of cost𝐶 by a verified checkpoint of cost𝑉 +𝐶 . However,
because a silent error is always detected only at the end of the period,

when the verification reveals the error, the formula will be different.

With the notations of Section 2.2, the two sources of waste become

𝑆1 =
𝑉+𝐶

𝑊 +𝑉+𝐶 and 𝑆2 =
1

𝜇silent
(𝑅+𝑊 +𝑉). Altogether, both sources of

waste approximately add up, so we have to find𝑊 that minimizes

𝑆1 + 𝑆2. Simplifying as before, we obtain 𝑆1 + 𝑆2 ≈ 𝑉+𝐶
𝑊

+ 𝑊
𝜇silent

,

which is minimized for

𝑊YD =

√︃
𝜇silent (𝑉 +𝐶) (2)

Equation (2) is the Young/Daly formula for silent errors!

5.3 Extensions
A first natural extension is to deal with both fail-stop and silent

errors. Indeed, both sources of errors are likely to strike simulta-

neously when executing a parallel application. In that case, the

failure-free waste 𝑆1 =
𝑉+𝐶

𝑊 +𝑉+𝐶 remains unchanged but the failure-

induced waste should be updated to account for both error types:

𝑆2 =
1

𝜇fail

(
𝐷 + 𝑅 + 1

2

(𝑊 +𝑉 +𝐶)
)
+ 1

𝜇silent
(𝑅 +𝑊 +𝑉)

Here for clarity, we have used 𝜇fail instead of simply 𝜇 for the MTBF

of the application. Simplifying again, we obtain that the total waste

is minimized for

𝑊YD =

√√
1

1

2𝜇fail
+ 1

𝜇silent

(𝑉 +𝐶) (3)

Equation (3) is the Young/Daly formula for fail-stop and silent er-

rors combined! We check that Equation (3) reduces to Equation (1)

when 𝜇silent = ∞ and 𝑉 = 0 (only fail-stop errors) and to Equa-

tion (2) when 𝜇fail = ∞ (only silent errors). The general case uses

the harmonic mean of 𝜇fail and 𝜇silent weighted by the average

proportion of re-execution time in a period when struck by an error.

The second extension applies when application-specific informa-

tion enables to decrease the cost of a verification well below the cost

of a checkpoint, i.e., when 𝑉 ≪ 𝐶 . In that case, it is useful to insert

some intermediate verifications within the period to detect silent

errors early on. Assume that we deal with silent errors only and see

Figure 3 for an example of a period with 2 intermediate verifications

(and a third one at the end of the period to verify the checkpoint).

IC3 2022, August 4-6, 2022, Noida, IndiaAnne Benoit, Yishu Du, Thomas Herault, Loris Marchal, Guillaume Pallez, Lucas Perotin, Yves Robert, Hongyang Sun, and Frédéric Vivien

The failure-free waste 𝑆1 is increased to 𝑆1 = 3𝑉+𝐶
𝑊 +3𝑉+𝐶 ≈ 3𝑉+𝐶

𝑊
.

However, the failure-induced waste is reduced to

𝑆2 = 1

𝜇silent

[
1

3
(𝑅 + 𝑊

3
+𝑉) + 1

3
(𝑅 + 2𝑊

3
+ 2𝑉) + 1

3
(𝑅 +𝑊 + 3𝑉)

]
≈ 1

𝜇silent
(1+2+3)𝑊

9
= 2𝑊

3𝜇silent

To see this, with equal probability
1

3
, the silent error will strike

either third of the pattern, and re-execution will cost either
𝑊
3
(first

third), or
2𝑊
3

(second third), or𝑊 (last third). This leads to 𝑆1 + 𝑆2

minimized for𝑊 =

√︃
3

2
𝜇silent (3𝑉 +𝐶) and we get (𝑆1 + 𝑆2)min =

2

√︂
2(3𝑉+𝐶)
3𝜇silent

for that value. In comparison, without intermediate

verification, we had (𝑆1 + 𝑆2)min = 2

√︃
𝑉+𝐶
𝜇silent

. We check that adding

two intermediate verifications is better than none as long as 𝑉 ≤
𝐶
3
. This is very likely to be the case with an application-specific

detector.

We refer to [10] for the analysis of more general patterns. Also,

we have assumed a perfect verification mechanism, while all ap-

plication detectors have a limited recall (ratio of missed errors, or

false negatives) and a limited precision (ratio of detected errors that

are in fact not errors, or false positives). One can have an arsenal

of several detectors of different recall, precision, and cost that can

be used; see [6] for choosing the best approach.

6 CONCLUSION
This survey has dealt with checkpointing policies based upon the

Young/Daly period and has assessed its usefulness and robustness

together with its limitations. We discuss some extensions and open

problems in this conclusion.

For preemptible applications (Section 2), we have focused on

coordinated checkpointing onto stable storage, but most of the

results hold for other methods that reduce checkpoint overhead,

such as in-memory checkpointing [25, 46, 69], two-level check-

pointing [23, 57] and multi-level checkpointing [8, 9, 22, 45].

For task-based applications, one could envision an extension of

coordinated checkpointing designed for such systems. Using peri-

odic coordinated checkpointing to decide which tasks to checkpoint

in a distributed task system consists of finding a period between

two checkpoint waves, and coordinating all the processes of the

application to checkpoint their state. Applying this heuristic to a

task-based system does not ensure optimal performance, because

the amount of data to checkpoint depends on the number and in-

put of the ready tasks and varies over time, which is outside the

assumptions of the periodic checkpointing approach. However, by

continuously adapting the period to the amount of work executed

(either maximal or averaged across all processors), this strategy

may provide an efficient solution in scenarios where tasks are small

and where failures are rare.

For both application models (preemptible and task-based), we

have assumed failure independence. Indeed, the standard model

assumes IID failure inter-arrival times, or IATs, on each node, with

a common distribution D. As for temporal dependence, it has been
observedmany times that when a failure occurs, it may trigger other

failures that will strike different system components [7, 33, 62]. As

an example, a failing cooling system may cause a series of succes-

sive crashes of different nodes. Also, an outstanding error in the

file system will likely be followed by several others [40, 54]. As for

spatial dependence, it is clear that the overheating of some node

in a cabinet is quite likely to be followed by the overheating of

neighbor nodes (which comes atop of a temporal dependence as

well!). Bautista-Gomez et al. [7] have studied nine systems, and

they report periods of high failure density in all of them. They

call these periods cascade failures. This observation has led them

to revisit the temporal failure independence assumption, and to

design bi-periodic checkpointing algorithms that use different pe-

riods in normal (failure-free) and degraded (with failure cascades)

modes. [62] introduces a dynamic strategy called lazy checkpoint-
ing to adjust to changes in the failure rate. Another approach has

been proposed in [4], using quantiles of consecutive IAT pairs. It

is an open problem to derive an efficient checkpoint strategy that

can account for temporal or spatial dependence between failures.

For example, spatial dependence calls for a variant of in-memory

checkpointing where the buddy of a processor (acting replica of

a checkpoint) is chosen far away from that processor, while it is

better to select a physical neighbor to optimize communication

overhead if failures are truly independent. Complicated trade-offs

must be achieved.

Finally, for silent errors, the first open problem remains which

detector to use and when. Some parts of the application are criti-

cal (such as its execution code) and must be protected at all costs

while some other parts (like non-critical data) may be loosely and

infrequently verified by cheap mechanisms; we speak of selective
reliability in such a framework. More generally, trustworthy com-
puting is the problem of guaranteeing, at least with some high

probability, that the final results of a parallel application are correct.

The higher the flop count and the larger the data footprint, the

more challenging to achieve this goal!

REFERENCES
[1] S. Arunagiri, J. T. Daly, and P. J. Teller. Modeling and Analysis of Checkpoint I/O

Operations. In Analytical and Stochastic Modeling Techniques and Applications:
17th International Conference, pages 387–399. Springer, 2010.

[2] G. Aupy, A. Benoit, H. Casanova, and Y. Robert. Scheduling computational

workflows on failure-prone platforms. Int. J. of Networking and Computing,
6(1):2–26, 2016.

[3] G. Aupy, A. Benoit, T. Hérault, and Y. Robert. Optimal checkpointing period:

time vs. energy. In PMBS 2013, the 4th Int. Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems. LNCS
Springer Verlag, 2013.

[4] G. Aupy, Y. Robert, and F. Vivien. Assuming failure independence: are we right

to be wrong? In FTS’2017, 2017.
[5] A. Bala and I. Chana. Fault tolerance-challenges, techniques and implementation

in cloud computing. International Journal of Computer Science Issues (IJCSI),
9(1):288, 2012.

[6] L. Bautista-Gomez, A. Benoit, A. Cavelan, S. Raina, Y. Robert, and H. Sun. Coping

with recall and precision of soft error detectors. J. Parallel and Distributed
Computing, 98:8–24, 2016.

[7] L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta, C. Engelmann,

F. Cappello, and M. Snir. Reducing waste in extreme scale systems through

introspective analysis. In IPDPS, pages 212–221. IEEE, 2016.
[8] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and

S. Matsuoka. FTI: High performance fault tolerance interface for hybrid systems.

In Proc. SC’11, 2011.
[9] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert, and H. Sun. Towards optimal

multi-level checkpointing. IEEE Trans. Computers, 66(7):1212–1226, 2017.
[10] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose algo-

rithms to cope with fail-stop and silent errors. ACM Trans. Parallel Computing,
3(2), 2016.

Checkpointing à la Young/Daly IC3 2022, August 4-6, 2022, Noida, India

[11] A. Benoit, L. Perotin, Y. Robert, and H. Sun. Checkpointing Workflows à la

Young/Daly Is Not Good Enough. Research report RR-9413, INRIA, 2021. Available

at https://hal.inria.fr/hal-03264047/.

[12] A. Benoit, L. Perotin, Y. Robert, and F. Vivien. Checkpointing strategies to protect

parallel jobs from non-memoryless fail-stop errors. Research report RR-9465,

INRIA, 2022. Available at https://hal.inria.fr/hal-03610883.

[13] A. R. Benson, S. Schmit, and R. Schreiber. Silent error detection in numerical

time-stepping schemes. Int. J. High Performance Computing Applications, 2014.
[14] H. L. Bodlaender and T. Wolle. A note on the complexity of network reliability

problems. IEEE Trans. Inf. Theory, 47:1971–1988, 2004.
[15] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault tolerance

applied to high performance computing. J. Parallel Distrib. Comput., 69(4):410–
416, 2009.

[16] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien. Checkpointing

strategies for parallel jobs. In Proc. of SC’11, 2011.
[17] G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear

algebra methods. In ICS. ACM, 2008.

[18] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward exascale

resilience: 2014 update. Supercomputing frontiers and innovations, 1(1), 2014.
[19] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states

of distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.
[20] Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for

soft error detection in iterative methods. In Proc. PPoPP, pages 167–176, 2013.
[21] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart

dumps. FGCS, 22(3):303–312, 2006.
[22] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimization of

multi-level checkpoint model for large scale HPC applications. In IPDPS. IEEE,
2014.

[23] S. Di, Y. Robert, F. Vivien, and F. Cappello. Toward an optimal online check-

point solution under a two-level HPC checkpoint model. IEEE Trans. Parallel &
Distributed Systems, 2016.

[24] Y. Ding, G. Yao, and K. Hao. Fault-tolerant elastic scheduling algorithm for

workflow in cloud systems. Information Sciences, 393:47–65, 2017.
[25] J. Dongarra, T. Hérault, and Y. Robert. Performance and reliability trade-offs

for the double checkpointing algorithm. Int. J. of Networking and Computing,
4(1):23–41, 2014.

[26] Y. Du, G. Pallez, L. Marchal, and Y. Robert. Optimal checkpointing strategies

for iterative applications. IEEE Trans. Parallel Distributed Systems, 33(3):507–522,
2022.

[27] N. El-Sayed and B. Schroeder. To checkpoint or not to checkpoint: Understanding

energy-performance-i/o tradeoffs in hpc checkpointing. In CLUSTER, pages 93–
102, 2014.

[28] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen,

P. G. Bridges, and D. Arnold. Evaluating the Viability of Process Replication

Reliability for Exascale Systems. In SC’11. ACM, 2011.

[29] E. Gelenbe, P. Boryszko, M. Siavvas, and J. Domanska. Optimum checkpoints for

time and energy. In 28th MASCOTS, pages 1–8. IEEE, 2020.
[30] J. N. Hagstrom. Computational complexity of PERT problems. Networks,

18(2):139–147, 1988.

[31] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien. Checkpointing

workflows for fail-stop errors. IEEE Trans. Computers, 67(8):1105–1120, 2018.
[32] L. Han, V. Le Fèvre, L.-C. Canon, Y. Robert, and F. Vivien. A generic approach

to scheduling and checkpointing workflows. In ICPP’2018, the 47th Int. Conf. on
Parallel Processing, 2018.

[33] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cappello. Modeling

and tolerating heterogeneous failures in large parallel systems. In Proc. SC’11,
2011.

[34] T. Herault and Y. Robert, editors. Fault-Tolerance Techniques for High-Performance
Computing, Computer Communications and Networks. Springer Verlag, 2015.

[35] T. Herault, Y. Robert, A. Bouteiller, D. Arnold, K. B. Ferreira, G. Bosilca, and

J. Dongarra. Checkpointing strategies for shared high-performance computing

platforms. International Journal of Networking and Computing, 9(1):28–52, 2019.
[36] M. Heroux and M. Hoemmen. Fault-tolerant iterative methods via selective

reliability. Research report SAND2011-3915 C, Sandia Nat. Lab., 2011.

[37] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix

operations. IEEE Trans. Comput., 33(6):518–528, 1984.
[38] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays don’t strike twice:

understanding the nature of DRAM errors and the implications for system design.

SIGARCH Comput. Archit. News, 40(1):111–122, 2012.
[39] G. Kandaswamy, A. Mandal, and D. A. Reed. Fault tolerance and recovery of

scientific workflows on computational grids. In 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID), pages 777–782. IEEE,
2008.

[40] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud intermediate data fault-

tolerant. In Proc. 1st ACM Symposium on Cloud Computing, SoCC ’10. ACM,

2010.

[41] P. Kumari and P. Kaur. A survey of fault tolerance in cloud computing. Journal
of King Saud University - Computer and Information Sciences, 2018.

[42] G. Lu, Z. Zheng, and A. A. Chien. When is multi-version checkpointing needed?

In Proc. 3rd Workshop on Fault-tolerance for HPC at extreme scale (FTXS), pages
49–56, 2013.

[43] R. E. Lyons andW. Vanderkulk. The use of triple-modular redundancy to improve

computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.
[44] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, Modeling,

and Evaluation of a Scalable Multi-level Checkpointing System. In SC. ACM,

2010.

[45] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, Modeling,

and Evaluation of a Scalable Multi-level Checkpointing System. In Proc. SC’10,
2010.

[46] X. Ni, E. Meneses, and L. V. Kalé. Hiding checkpoint overhead in HPC applications

with a semi-blocking algorithm. In Cluster Computing (CLUSTER), 2012 IEEE
International Conference on, pages 364–372. IEEE Computer Society, 2012.

[47] T. O’Gorman. The effect of cosmic rays on the soft error rate of a DRAM at

ground level. IEEE Trans. Electron Devices, 41(4):553–557, 1994.
[48] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 5th edition,

2016.

[49] S. Prathiba and S. Sowvarnica. Survey of failures and fault tolerance in cloud. In

2017 2nd International Conference on Computing and Communications Technologies
(ICCCT), pages 169–172, 2017.

[50] J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing

the probability that a graph is connected. SIAM J. Comp., 12(4):777–788, 1983.
[51] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In ScalA ’13, 2013.
[52] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-performance

computing systems. In Proc. of DSN, pages 249–258, 2006.
[53] B. Schroeder and G. A. Gibson. Understanding failures in petascale computers.

Journal of Physics: Conference Series, 78(1), 2007.
[54] K. Schroiff, P. Gemsjaeger, and C. Bolik. Cascading failover of a data management

application for shared disk file systems in loosely coupled node clusters, 2006.

US Patent 6,990,606.

[55] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant precon-

ditioned conjugate gradient for sparse linear system solution. In ICS. ACM,

2012.

[56] P. Sigdel, X. Yuan, and N. Tzeng. Realizing best checkpointing control in com-

puting systems. IEEE TPDS, 32(2):315–329, 2021.
[57] L. Silva and J. Silva. Using two-level stable storage for efficient checkpointing.

IEE Proceedings - Software, 145(6):198–202, 1998.
[58] M. Snir and et al. Addressing failures in exascale computing. Int. J. High Perform.

Comput. Appl., 28(2):129–173, 2014.
[59] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf,

and S. Gurumurthi. Memory errors in modern systems: The good, the bad, and

the ugly. In 20th Int. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 297–310. ACM, 2015.

[60] O. Subasi, G. Kestor, and S. Krishnamoorthy. Toward a general theory of optimal

checkpoint placement. In CLUSTER, pages 464–474. IEEE, 2017.
[61] O. Subasi, T. Martsinkevich, F. Zyulkyarov, O. Unsal, J. Labarta, and F. Cappello.

Unified fault-tolerance framework for hybrid task-parallel message-passing ap-

plications. IJHPCA, 32(5):641–657, 2018.
[62] D. Tiwari, S. Gupta, and S. S. Vazhkudai. Lazy checkpointing: Exploiting temporal

locality in failures to mitigate checkpointing overheads on extreme-scale systems.

In 44th Int. Conf. on Dependable Systems and Networks, pages 25–36. IEEE, 2014.
[63] S. Toueg and O. Babaoğlu. On the optimum checkpoint selection problem. SIAM

J. Comput., 13(3), 1984.
[64] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J.

Comput., 8(3):410–421, 1979.
[65] O.Weidner, M. Atkinson, A. Barker, and R. Filgueira Vicente. Rethinking high per-

formance computing platforms: Challenges, opportunities and recommendations.

In Proc. Data-Intensive Distributed Computing DIDC. ACM, 2016.

[66] X. Xu, R. Mo, F. Dai, W. Lin, S. Wan, and W. Dou. Dynamic resource provisioning

with fault tolerance for data-intensive meteorological workflows in cloud. IEEE
Transactions on Industrial Informatics, 16(9):6172–6181, 2019.

[67] J. W. Young. A first order approximation to the optimum checkpoint interval.

Comm. of the ACM, 17(9):530–531, 1974.

[68] F. Zhang, C. Docan,M. Parashar, S. Klasky, N. Podhorszki, andH. Abbasi. Enabling

In-situ Execution of Coupled Scientific Workflow on Multi-core Platform. In Proc.
26th IEEE Int. Parallel and Distributed Processing Symposium, pages 1352–1363,

2012.

[69] G. Zheng, L. Shi, and L. V. Kale. FTC-Charm++: an in-memory checkpoint-based

fault tolerant runtime for Charm++ and MPI. In Cluster Computing, 2004 IEEE
International Conference on, pages 93–103. IEEE Computer Society, 2004.

[70] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld, and C. Mon-

trose. Cosmic ray soft error rates of 16-Mb DRAM memory chips. IEEE Journal
of Solid-State Circuits, 33(2):246–252, 1998.

[71] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. IBM

experiments in soft fails in computer electronics. IBM J. Res. Dev., 40(1):3–18,
1996.

https://hal.inria.fr/hal-03264047/
https://hal.inria.fr/hal-03610883

	Abstract
	1 Introduction
	2 Preemptible Applications
	2.1 Background
	2.2 The Young/Daly Formula
	2.3 Accuracy
	2.4 Extensions
	2.5 Loosely-Coupled Applications

	3 Task Graphs
	3.1 Baseline
	3.2 Linear Chains
	3.3 Iterative Applications
	3.4 General Workflows

	4 Dealing with Uncertainty
	4.1 Unknown MTBF
	4.2 Unknown Checkpoint Time (Due to Contention)

	5 Silent Errors
	5.1 Background
	5.2 Optimal Period for Silent Errors
	5.3 Extensions

	6 Conclusion
	References

